Interval graph mining
Amina Kemmar,
Yahia Lebbah and
Samir Loudni
International Journal of Data Mining, Modelling and Management, 2018, vol. 10, issue 1, 1-22
Abstract:
Frequent subgraph mining is a difficult data mining problem aiming to find the exact set of frequent subgraphs into a database of graphs. Current subgraph mining approaches make use of the canonical encoding which is one of the key operations. It is well known that canonical encodings have an exponential time complexity. Consequently, mining all frequent patterns for large and dense graphs is computationally expensive. In this paper, we propose an interval approach to handle canonicity, leading to two encodings, lower and upper encodings, with a polynomial time complexity, allowing to tightly enclose the exact set of frequent subgraphs. These two encodings lead to an interval graph mining algorithm where two minings are launched in parallel, a lower mining (resp. upper mining) using the lower (resp. upper) encoding. The interval graph mining approach has been implemented within the state of the art Gaston miner. Experiments performed on synthetic and real graph databases coming from stock market and biological datasets show that our interval graph mining is effective on dense graphs.
Keywords: graphmining; interval approach; frequent subgraph discovery; graph encoding; subgraph isomorphism; graph isomorphism. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=89629 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:10:y:2018:i:1:p:1-22
Access Statistics for this article
More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().