EconPapers    
Economics at your fingertips  
 

Data modelling for large-scale social media analytics: design challenges and lessons learned

Ahmet Arif Aydin and Kenneth M. Anderson

International Journal of Data Mining, Modelling and Management, 2020, vol. 12, issue 4, 386-414

Abstract: We live in a world of big data; organisations collect, store, and analyse large volumes of data for various purposes. The five V's of big data introduce new challenges for developers to handle when performing data processing and analysis. Indeed, data modelling is one of the most challenging and critical aspects of big data because it determines how data will be structured and stored; these decisions then impact how that data can be processed and analysed. In this paper, we report on designing a data model for storing and analysing Twitter data in support of crisis informatics. In this work, we leverage the data model provided by columnar NoSQL data stores to design column families that can efficiently index, sort, store and analyse large Twitter datasets. In particular, our column families are designed to achieve efficient batch data processing. We evaluate these claims and discuss our future work.

Keywords: data modelling; social media analytics; big data analytics; NoSQL. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=111409 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:12:y:2020:i:4:p:386-414

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:12:y:2020:i:4:p:386-414