EconPapers    
Economics at your fingertips  
 

FastMap in dimensionality reduction: ensemble clustering of high dimensional data

Imran Khan and Joshua Z. Huang

International Journal of Data Science, 2017, vol. 2, issue 1, 15-28

Abstract: In this paper we propose an ensemble clustering method for high dimensional data which uses FastMap projection (FP) to generate component datasets. In comparison with subspace component data generation methods such as random sampling (RS), random projection (RP) and principal component analysis (PCA), FP can better preserve the clustering structure of the original data in the component datasets so that the performance of ensemble clustering can be improved significantly. We present experiment results on six real world high dimensional datasets to demonstrate the better preservation of the clustering structure of the original data in the component datasets generated with FastMap, in comparison with the component datasets generated with RS, RP and PCA. The experiment results of 12 ensemble clustering methods from combinations of four subspace component data generation methods and three consensus functions also demonstrated that the ensemble clustering methods with FastMap outperformed other ensemble clustering methods with RS, RP and PCA. Ensemble clustering with FastMap also performed better than the k-means clustering algorithm.

Keywords: ensemble clustering; FastMap; random sampling; random projection; PCA; principal component analysis; dimensionality reduction; high dimensional data; k-means clustering. (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=82743 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdsci:v:2:y:2017:i:1:p:15-28

Access Statistics for this article

More articles in International Journal of Data Science from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdsci:v:2:y:2017:i:1:p:15-28