EconPapers    
Economics at your fingertips  
 

Ultra short-term wind power prediction based on lightweight learning machine with error compensation

Huifang Qian, Yunhao Luo, Xuan Zhou, Ren-Ying Li and Jiahao Guo

International Journal of Global Energy Issues, 2024, vol. 46, issue 5, 463-482

Abstract: The wind power prediction model has been improved in order to obtain higher prediction accuracy, but this model structure then becoming complicated and the training time is prolonged. Therefore, this paper proposes a Lightweight Learning Machine with Error Compensation (LLM-EC), which consists of two parts: prediction and error compensation. The Lightweight Learning Machine (LLM) accomplishes the prediction part by learning the historical patterns of wind energy and related factors. To improve prediction accuracy, this paper incorporates an Improved Temporal Attention Mechanism (ITAM) into LLM. In the error compensation part, the prediction results of the LLM are re-compensated using the Error Compensation Machine (ECM) to reduce the error accumulation during the rolling prediction process. Finally, a comparison of the benchmark model with LLM-EC in terms of prediction accuracy, training time, and memory usage reveals that LLM-EC has significantly less prediction error; less training time; and less memory occupied by the model.

Keywords: ultra short-term wind power; lightweight construction; attention mechanism; error compensation. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=140764 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijgeni:v:46:y:2024:i:5:p:463-482

Access Statistics for this article

More articles in International Journal of Global Energy Issues from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijgeni:v:46:y:2024:i:5:p:463-482