EconPapers    
Economics at your fingertips  
 

Data-driven prognostic framework for remaining useful life prediction

Asmaa Motrani and Rachid Noureddine

International Journal of Industrial and Systems Engineering, 2023, vol. 43, issue 2, 210-221

Abstract: Industrial prognostic, based on data resulting from a monitoring up stream, is considered as a crucial stage in making complex industrial systems more reliable. The purpose of the industrial prognostic is to predict the future state of the monitored system, and to give, more specifically, an estimation of its remaining useful lifetime (RUL). Among the used approaches, data-driven prognostic is the most promising when dealing with multitude heterogeneous data. The aim of this work is to present a data-driven prognostic framework implementation, where the RUL is determined through the association of statistical and artificial intelligence methods. This framework is based on the relevance vector machine (RVM) technique to build the predictive degradation model in the offline part, and on the similarity-based interpolation (SBI) technique for the prediction of the remaining useful life in the online part. The different steps of the proposed framework are described and implemented through a case study.

Keywords: prognostic and health management; PHM; data-driven prognostic; sparse Bayesian learning; SBL; relevance vector machine; RVM; sparse Bayesian interpolation; SBI; remaining useful life; RUL. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=128666 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:43:y:2023:i:2:p:210-221

Access Statistics for this article

More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijisen:v:43:y:2023:i:2:p:210-221