Automatic error calibration system for English semantic translation based on machine learning
Zhenhua Wei
International Journal of Industrial and Systems Engineering, 2023, vol. 43, issue 3, 301-316
Abstract:
The traditional English semantic translation error calibration system can not determine the optimal translation solution, which has the problems of high CPU utilisation, low translation accuracy and high calibration time-consuming. Before English semantic translation, English semantic features are decomposed to realise fuzzy mapping selection of English semantic translation. Then, English semantic translation decision function is obtained by constructing semantic ontology model, while English semantic translation error automatic calibration algorithm is realised by machine learning algorithm. Finally, the overall architecture and network topology of the system is designed, and the design of automatic proofreading system of English semantic translation errors is completed. The experimental results show that the running time of the proposed system is 1.5 s, the CPU occupancy rate of the designed system is only 0.9%, and the calibration accuracy is as high as 99%.
Keywords: dimensionless treatment; calibration algorithm; high CPU utilisation; low translation accuracy; high calibration time-consuming; machine learning; translation decision function. (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=129141 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:43:y:2023:i:3:p:301-316
Access Statistics for this article
More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().