Integration of Kansei engineering and artificial neural network toward the implementation of intelligent food packaging design based on consumer preferences
Sakir Sakir,
Bambang Dwi Argo,
Yusuf Hendrawan and
Sugiono Sugiono
International Journal of Industrial and Systems Engineering, 2025, vol. 50, issue 3, 343-370
Abstract:
Packaging design innovation is one of the crucial strategies for consumer-oriented product development. Therefore, this research aimed to design intelligent food packaging (IFP) for beef products using an integrated approach of Kansei engineering (KE) and artificial neural network (ANN) based on consumer preferences. The results showed 37 valid and reliable Kansei words based on Kaiser-Meyer-Olkin measure (KMO), Bartlett's test of sphericity, and measure of sampling adequacy (MSA) using SPSS 26 software. Based on the results, the best ANN structure was achieved with the Traingd learning algorithm which had 418 inputs, 20 nodes in the hidden layer, and eight outputs with a training mean square error (MSE) of 0.0099991, a validation MSE of 0.0321, a training regression (R) of 0.99287, and a validation R of 0.98928. Therefore, the best IFP design for beef products based on consumer preferences could be achieved by integrating KE and ANN methods.
Keywords: Kansei engineering; artificial neural network; intelligent food packaging design; consumer preferences. (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=147683 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijisen:v:50:y:2025:i:3:p:343-370
Access Statistics for this article
More articles in International Journal of Industrial and Systems Engineering from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().