Sampling method based on improved C4.5 decision tree and its application in prediction of telecom customer churn
Weibin Deng,
Linsen Deng,
Jin Liu and
Jie Qi
International Journal of Information Technology and Management, 2019, vol. 18, issue 1, 93-109
Abstract:
Nowadays, customer churn prediction is quite important for telecom operators to reduce churn rate and remain competitive. However, the imbalance between the retained customers and the churners affects the prediction accuracy. For solving this problem, a new sampling method based on improved C4.5 decision tree is proposed. Firstly, an initial weight is set for each sample according to the data scale of each class. Then, the samples' weight is adjusted through several rounds of alternative training by the improved C4.5 decision tree algorithm. Both the gain ratio and the misclassification cost are considered for splitting criterion. Besides, the boundary minority examples and the centre majority examples are found according to their weights. Furthermore, over-sampling is conducted for the boundary minority examples by synthetic minority over-sampling technique (SMOTE) and under-sampling is executed for the majority examples. Experiments on UCI public data and telecom operator data show the efficiency of the new method.
Keywords: telecom customer churn; imbalanced data; under-sampling; over-sampling; decision tree; data mining. (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=97887 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijitma:v:18:y:2019:i:1:p:93-109
Access Statistics for this article
More articles in International Journal of Information Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().