EconPapers    
Economics at your fingertips  
 

A recommendation algorithm for point of interest using time-based collaborative filtering

Jun Zeng, Xin He, Feng Li and Yingbo Wu

International Journal of Information Technology and Management, 2020, vol. 19, issue 4, 347-357

Abstract: Location-based social networks (LBSNs) make it possible for people to share their visited places by uploading the check-in information. To improve the efficiency of recommendation algorithm, researchers introduce check-in data into point of interest (POI) recommendation to help users find new and interesting place. However, some researches ignore the signification of time factor for POI recommendation in LBSNs. In this paper, we propose a time-based collaborative filtering algorithm according to the similarity between users which combines the global similarity during a long period and local similarity within a short time interval. The experimental results show that the method we proposed can get more accurate recommendation.

Keywords: location-based social networks; LBSN; recommendation system; point of interest recommendation; time-based collaborative filtering. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=110242 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijitma:v:19:y:2020:i:4:p:347-357

Access Statistics for this article

More articles in International Journal of Information Technology and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijitma:v:19:y:2020:i:4:p:347-357