Predictive modelling for smart and sustainable logistics
Chuks Medoh and
Arnesh Telukdarie
International Journal of Logistics Systems and Management, 2024, vol. 49, issue 4, 462-485
Abstract:
Logistics systems (LS) are complex networks that are indiscriminately interconnected and comprising facilities, data, raw material, and product. Quantifying the performance of LS requires a comprehensive understanding of the structure and behaviour of these systems. This is subject to technological complexities. This paper aims to develop a predictive modelling suitable to quantify the performance of LS. The components of the SSLM consist of, business process based, influencing factors and associated activities. This paper adopts a mixed-method approach to quantify the relative performance of each factor via simulation and design of experiment (DOE) approach. The approach provides for the modelling of the statistical significance of the interactions and effect of each factor. The results demonstrate the ability to integrate LS in forecasting the SSLM network optimisation. The innovations reinforce the context of smart and sustainable logistics practices. The SSLM facilitates managers' capacities beyond traditional approaches to quantifying the performance of LS.
Keywords: logistics; sustainability; simulation; smart and sustainable logistics model; SSLM; logistics systems; LS. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=143386 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijlsma:v:49:y:2024:i:4:p:462-485
Access Statistics for this article
More articles in International Journal of Logistics Systems and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().