Tetracontatetragonal fuzzy number with application of fuzzy transportation problem
Sudha Rana,
Deepak Kumar and
Anita Kumari
International Journal of Mathematics in Operational Research, 2024, vol. 29, issue 2, 214-233
Abstract:
The objective of this paper is to introduce a new fuzzy number with 44 points called as tetracontatetragonal fuzzy number. Here, we derived a new ranking method for tetracontatetragonal fuzzy numbers. In this research work, we have investigated the results by implementing tetracontatetragonal fuzzy number to an unbalanced fuzzy transportation problem and we used four methods like Vogel's approximation method (VAM), Russel's approximation method (RAM), least cost's approximation method, and Modi's approximation method, to investigate the minimum cost transportation problem using tetracontatetragonal fuzzy numbers. We also calculated the minimum cost from a set of origins to a set of destinations in fuzzy transportation problem.
Keywords: fuzzy number; tetracontatetragonal fuzzy number; crisp values; ranking function; fuzzy transportation problem; Russel's approximation method; RAM; Vogel's approximation method; VAM. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=142115 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmore:v:29:y:2024:i:2:p:214-233
Access Statistics for this article
More articles in International Journal of Mathematics in Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().