Threshold results for the inventory cycle offsetting problem
Ernest Croot and
Kai Huang
International Journal of Mathematics in Operational Research, 2013, vol. 5, issue 2, 255-281
Abstract:
In a multi-item inventory system, given the order cycle lengths and volumes of the items, the determination of the replenishment times, so as to minimise the resource requirement, is known as the inventory cycle offsetting problem. In this paper we show that with probability one, there exists an interval [0, CK1 Q],for which the resource requirement is near the minimum it could be, where C1 > 1 is a constant, K is the number of items and Q is the maximum cycle length. We further prove that there is also a certain constant C2 > C1 > 1 so that with high probability, the resource requirement for the time interval [0, CK2,Q] is near the worst that it could be. We also present some numerical experiments that suggest how C1 depends on certain problem parameters, which implies that for many practical cases, a random algorithm will find near-optimal solutions.
Keywords: inventory cycle offsetting; replenishment times; number theory; concentration of measure; resource requirements; multi-item inventory systems. (search for similar items in EconPapers)
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=52463 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijmore:v:5:y:2013:i:2:p:255-281
Access Statistics for this article
More articles in International Journal of Mathematics in Operational Research from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().