A novel virtual machine scheduling policy based on performance prediction model
Dongbo Liu and
Yongjian Li
International Journal of Networking and Virtual Organisations, 2018, vol. 18, issue 4, 279-293
Abstract:
In cloud platforms, virtual machine scheduling policy plays an important role for providing desirable service quality for users. In many existing scheduling policies, the task execution time is often assumed to be constant or defined by users. However, either unpredictable workload or resource unreliability may significantly affect task execution time, which in turn results in inefficient scheduling decisions. In this paper, we first present a task execution time model by applying queue theory; then we use this model to predict the performance of application at runtime and propose a novel virtual machine scheduling policy. By conducting extensive experiments, we investigate the effectiveness and efficiency of the proposed scheduling policy. The experimental results indicate that it can significantly reduce the response time of cloud application comparing with other existing scheduling policies.
Keywords: virtual machine; performance prediction; scheduling algorithm; cloud. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=93649 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijnvor:v:18:y:2018:i:4:p:279-293
Access Statistics for this article
More articles in International Journal of Networking and Virtual Organisations from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().