EconPapers    
Economics at your fingertips  
 

Dynamic grouping method for online learning behaviour based on social network analysis

Juan Guo

International Journal of Networking and Virtual Organisations, 2024, vol. 30, issue 1, 27-43

Abstract: In this paper, a dynamic grouping method for online learning behaviour based on social network analysis is proposed. The Louvain community detection algorithm is utilised for social network analysis. Based on the analysis results and distributed web crawler, online learning behaviour information is mined and subjected to standardised processing, including outlier removal, noise filtering, and data segment alignment, to extract relevant features. A grouping objective function based on the XGBoost algorithm is constructed for the dynamic grouping of online learning behaviour. The objective function is solved to obtain the dynamic grouping results. Experimental results demonstrate that the proposed method achieves a minimum relative error rate of 1.3% in feature extraction, a maximum accuracy of 97.9% in grouping, and an average task completion time of 0.77 s.

Keywords: social network analysis; online learning behaviour; dynamic grouping; distributed web crawler; XGBoost algorithm; objective function. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=136770 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijnvor:v:30:y:2024:i:1:p:27-43

Access Statistics for this article

More articles in International Journal of Networking and Virtual Organisations from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijnvor:v:30:y:2024:i:1:p:27-43