Refined push method of marketing data based on social trust network
Xiaohuan Ning
International Journal of Networking and Virtual Organisations, 2024, vol. 30, issue 1, 57-69
Abstract:
In order to reduce the push error of marketing data and improve user satisfaction, a refined push method of marketing databased on social trust networks is proposed. Firstly, crawler technology is used to collect user online browsing data from server logs. Secondly, a social trust network graph is constructed to calculate the cognitive trust strength and interactive trust strength of users. Finally, based on the trust strength calculation results, Pearson correlation coefficient is used to calculate the user's rating similarity, and a marketing data refinement push function is constructed based on the rating similarity to complete the refinement push of marketing data. The experimental results show that compared with existing push methods, the root mean square error and average absolute error of the proposed method are significantly reduced, and user satisfaction is significantly improved, with user satisfaction basically maintained at over 90%.
Keywords: social trust network; marketing data; refined push; Pearson correlation coefficient. (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.inderscience.com/link.php?id=136774 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijnvor:v:30:y:2024:i:1:p:57-69
Access Statistics for this article
More articles in International Journal of Networking and Virtual Organisations from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().