EconPapers    
Economics at your fingertips  
 

Intelligent wristband human abnormal behaviour recognition method based on machine vision

Chun-Ling Liu and Chun-Bao Huo

International Journal of Product Development, 2022, vol. 26, issue 1/2/3/4, 254-267

Abstract: In order to overcome the problems of low recognition accuracy and high-recall rate of traditional methods, an intelligent wristband human abnormal behaviour recognition method based on machine vision is proposed. Firstly, the human behaviour video in the smart wristband is obtained through intensive sampling, and the image feature descriptor is obtained according to regularisation processing; the human abnormal behaviour features are extracted by DT algorithm; secondly, softmax classifier is introduced to classify the extracted human abnormal line features of intelligent wristband; the dense trajectory algorithm is used to extract the abnormal behaviour characteristics of intelligent wristband human body, and the machine vision is introduced to recognise the abnormal behaviour of intelligent wristband human body. The experimental results show that the recognition accuracy of this method is as high as 98.2%, and the recognition recall rate is only 4%, which shows that this method can effectively improve the recognition effect.

Keywords: smartband; machine vision; softmax classifier; abnormal behaviour; weighted processing method. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=125377 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijpdev:v:26:y:2022:i:1/2/3/4:p:254-267

Access Statistics for this article

More articles in International Journal of Product Development from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijpdev:v:26:y:2022:i:1/2/3/4:p:254-267