EconPapers    
Economics at your fingertips  
 

Personalised recommendation of smart home products based on convolution neural network

Xiaoyuan Luo and Jun Liu

International Journal of Product Development, 2022, vol. 26, issue 1/2/3/4, 52-63

Abstract: In order to solve the problems of high recommendation error and long recommendation time in traditional personalised recommendation methods for smart home products, a new personalised recommendation method for smart home products based on convolution neural network is proposed. The attributes of smart home products are superimposed, and the square root of the attribute weight vector and all components are calculated. Determine the relationship between the attributes and important factors of smart home products to be recommended, and complete the weight calculation of smart home product recommendation. The personalised recommendation model of smart home products is constructed, and the convolution neural network is used to obtain the global optimal solution of the personalised recommendation model, so as to realise the personalised recommendation of smart home products. The experimental results show that the minimum error of the proposed method is about 0.3%, and the recommendation time is less than 15 s.

Keywords: smart home products; personalised recommendation; product attributes; convolution neural network. (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=125328 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijpdev:v:26:y:2022:i:1/2/3/4:p:52-63

Access Statistics for this article

More articles in International Journal of Product Development from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijpdev:v:26:y:2022:i:1/2/3/4:p:52-63