EconPapers    
Economics at your fingertips  
 

Robust design of turbine blades against manufacturing variability

Nikita Thakur, A.J. Keane and P.B. Nair

International Journal of Reliability and Safety, 2011, vol. 5, issue 3/4, 420-436

Abstract: Turbine blade life is central to the integrity of the aircraft engine. Manufacturing variability may lead to variations in the expected life and performance of turbine blades. It becomes important therefore to understand these variations and seek new designs that are robust to manufacturing variability. The present work proposes a methodology that employs Free Form Deformation in conjunction with optimisation to generate realistic 3D representations of the manufactured blades using limited measurements available per blade. Lifing estimations on the perturbed geometries show a reduction of around 1.7% in mean life relative to the designed life with a maximum relative reduction of around 3.7%. Following this, the proposed methodology is employed for robust design studies resulting in a better turbine blade design. This design indicates an improvement of around 2% in the designed life, around 3% improvement in mean life and approximately 57% reduction in blade life variability as compared to the current turbine blade design.

Keywords: robust design; manufacturing variability; geometry manipulation; freeform deformation; FFD; turbine blade life; turbine blades; aircraft engines; turbine blade design. (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=41188 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijrsaf:v:5:y:2011:i:3/4:p:420-436

Access Statistics for this article

More articles in International Journal of Reliability and Safety from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijrsaf:v:5:y:2011:i:3/4:p:420-436