EconPapers    
Economics at your fingertips  
 

Frequency analysis of uncertain structures using imprecise probability

Mehdi Modares and Joshua Bergerson

International Journal of Reliability and Safety, 2015, vol. 9, issue 4, 235-254

Abstract: Two new methods for finite element based frequency analysis of a structure with uncertainty are developed. An imprecise probability formulation based on enveloping p-boxes is used to quantify the uncertainty present in the mechanical characteristics of the structure. For each element, independent variations are considered. Using the two developed methods, P-box Frequency Analysis (PFA) and Interval Monte-Carlo Frequency Analysis (IMFA), sharp bounds on natural circular frequencies at different probability levels are obtained. These methods establish a framework for handling incomplete information in structural dynamics. Numerical example problems are presented that illustrate the capabilities of the new methods along with discussions on their computational efficiency.

Keywords: structural dynamics; uncertainty; imprecise probability; p-box; interval Monte-Carlo; frequency analysis; uncertain structures; finite element analysis; FEA. (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.inderscience.com/link.php?id=73126 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijrsaf:v:9:y:2015:i:4:p:235-254

Access Statistics for this article

More articles in International Journal of Reliability and Safety from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijrsaf:v:9:y:2015:i:4:p:235-254