Score-Level Multimodal Biometric Authentication of Humans Using Retina, Fingerprint, and Fingervein
Rohit Srivastava
Additional contact information
Rohit Srivastava: University of Petroleum and Energy Studies, India
International Journal of Applied Evolutionary Computation (IJAEC), 2020, vol. 11, issue 3, 20-30
Abstract:
This paper characterizes a multi-modular framework for confirmation, dependent on the biometric combination of retina, finger vein, and unique mark acknowledgment. The authors have proposed feature extraction in retina acknowledgment model by utilizing SIFT and MINUTIA. Security is the fundamental idea in ATM (Automated Teller Machines) today. The use of multi-modular biometrics can be ATM. The work includes three biometric attributes of a client to be specific retina, unique mark, and finger veins. These are pre-prepared and joined (fused) together for score level combination approach. Retina is chosen as a biometric attribute as there are no parallel retina feature matches except if they are of the comparative client; likewise, retina has a decent vessel design making it a decent confirming methodology when contrasted with other biometric attributes. Security is found in the framework by multi-modular biometric combination of retina with finger vein and unique finger impression. Feature extraction approach and cryptography are utilized so as to accomplish security. The element extraction is finished with the assistance of MINUTIA and SIFT calculation, which are at that point characterized utilizing deep neural network (DNN). The element key focuses are intertwined at score level utilizing separation normal and later matched. The test result assessed utilizing MATLAB delineates the significant improvement in the presentation of multi-modular biometric frameworks with higher qualities in GAR and FAR rates.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAEC.2020070102 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jaec00:v:11:y:2020:i:3:p:20-30
Access Statistics for this article
International Journal of Applied Evolutionary Computation (IJAEC) is currently edited by Sukhpal Singh Gill
More articles in International Journal of Applied Evolutionary Computation (IJAEC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().