EconPapers    
Economics at your fingertips  
 

Feature Selection and Knapsack Problem Resolution Based on a Discrete Backtracking Optimization Algorithm

Khadoudja Ghanem and Abdesslem Layeb
Additional contact information
Khadoudja Ghanem: MiSC Laboratory, University Constantine 2, Algeria
Abdesslem Layeb: University Constantine 2, Algeria

International Journal of Applied Evolutionary Computation (IJAEC), 2021, vol. 12, issue 2, 1-15

Abstract: Backtracking search optimization algorithm is a recent stochastic-based global search algorithm for solving real-valued numerical optimization problems. In this paper, a binary version of backtracking algorithm is proposed to deal with 0-1 optimization problems such as feature selection and knapsack problems. Feature selection is the process of selecting a subset of relevant features for use in model construction. Irrelevant features can negatively impact model performances. On the other hand, knapsack problem is a well-known optimization problem used to assess discrete algorithms. The objective of this research is to evaluate the discrete version of backtracking algorithm on the two mentioned problems and compare obtained results with other binary optimization algorithms using four usual classifiers: logistic regression, decision tree, random forest, and support vector machine. Empirical study on biological microarray data and experiments on 0-1 knapsack problems show the effectiveness of the binary algorithm and its ability to achieve good quality solutions for both problems.

Date: 2021
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAEC.2021040101 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jaec00:v:12:y:2021:i:2:p:1-15

Access Statistics for this article

International Journal of Applied Evolutionary Computation (IJAEC) is currently edited by Sukhpal Singh Gill

More articles in International Journal of Applied Evolutionary Computation (IJAEC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jaec00:v:12:y:2021:i:2:p:1-15