EconPapers    
Economics at your fingertips  
 

Rice Crop Disease Prediction Using Machine Learning Technique

Bharati Patel and Aakanksha Sharaff
Additional contact information
Bharati Patel: National Institute of Technology, Raipur, India
Aakanksha Sharaff: National Institute of Technology, Raipur, India

International Journal of Agricultural and Environmental Information Systems (IJAEIS), 2021, vol. 12, issue 4, 1-15

Abstract: Crop yields are affected at large scale due to spread of unchecked diseases. The spread of these diseases is similar to the spreading of cancer in human body. But, unlike cancer these diseases can be identified at early stages through plant phenotyping traits analysis. In order to effectively identify these diseases, effective segmentation, feature extraction, feature selection and classification processes must be followed. Selection of the best combination for the given methods is very complex due to the presence of a large number of the aforementioned methods. Thereby disease prediction models are generally found to be ineffective. This paper proposes a highly effective machine learning-based formulation approach to select a proper classification process which improves the overall accuracy of crop disease detection with different dimensionality of plant dataset and included maximum features also. Hence, the proposed adaptive learning algorithm gives 99.2% accuracy compared to other techniques like Back-propagation Neural Network (BPNN), Convolutional Neural Network (CNN), and SVM.

Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... /IJAEIS.20211001.oa5 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jaeis0:v:12:y:2021:i:4:p:1-15

Access Statistics for this article

International Journal of Agricultural and Environmental Information Systems (IJAEIS) is currently edited by Frederic Andres

More articles in International Journal of Agricultural and Environmental Information Systems (IJAEIS) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jaeis0:v:12:y:2021:i:4:p:1-15