A Generalized and Robust Anti-Predatory Nature-Inspired Algorithm for Complex Problems
Rohit Kumar Sachan and
Dharmender Singh Kushwaha
Additional contact information
Rohit Kumar Sachan: Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
Dharmender Singh Kushwaha: Motilal Nehru National Institute of Technology Allahabad, Allahabad, India
International Journal of Applied Metaheuristic Computing (IJAMC), 2019, vol. 10, issue 1, 75-91
Abstract:
This article describes how nature-inspired algorithms (NIAs) have evolved as efficient approaches for addressing the complexities inherent in the optimization of real-world applications. These algorithms are designed to imitate processes in nature that provide some ways of problem solving. Although various nature-inspired algorithms have been proposed by various researchers in the past, a robust and computationally simple NIA is still missing. A novel nature-inspired algorithm that adapts to the anti-predatory behavior of the frog is proposed. The algorithm mimics the self defense mechanism of a frog. Frogs use their reflexes as a means of protecting themselves from the predators. A mathematical formulation of these reflexes forms the core of the proposed approach. The robustness of the proposed algorithm is verified through performance evaluation on sixteen different unconstrained mathematical benchmark functions based on best and worst values as well as mean and standard deviation of the computed results. These functions are representative of different properties and characteristics of the problem domain. The strength and robustness of the proposed algorithm is established through a comparative result analysis with six well-known optimization algorithms, namely: genetic, particle swarm, differential evolution, artificial bee colony, teacher learning and Jaya. The Friedman rank test and the Holm-Sidak test have been used for statistical analysis of obtained results. The proposed algorithm ranks first in the case of mean result and scores second rank in the case of “standard deviation”. This proves the significance of the proposed algorithm.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJAMC.2019010105 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jamc00:v:10:y:2019:i:1:p:75-91
Access Statistics for this article
International Journal of Applied Metaheuristic Computing (IJAMC) is currently edited by Peng-Yeng Yin
More articles in International Journal of Applied Metaheuristic Computing (IJAMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().