Artificial Neural Network for Markov Chaining of Rainfall Over India
Kavita Pabreja
Additional contact information
Kavita Pabreja: Maharaja Surajmal Institute, GGSIP University, India
International Journal of Business Analytics (IJBAN), 2020, vol. 7, issue 3, 71-84
Abstract:
Rainfall forecasting plays a significant role in water management for agriculture in a country like India where the economy depends heavily upon agriculture. In this paper, a feed forward artificial neural network (ANN) and a multiple linear regression model has been utilized for lagged time series data of monthly rainfall. The data for 23 years from 1990 to 2012 over Indian region has been used in this study. Convincing values of root mean squared error between actual monthly rainfall and that predicted by ANN has been found. It has been found that during monsoon months, rainfall of every n+3rd month can be predicted using last three months' (n, n+1, n+2) rainfall data with an excellent correlation coefficient that is more than 0.9 between actual and predicted rainfall. The probabilities of dry seasonal month, wet seasonal month for monsoon and non-monsoon months have been found.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJBAN.2020070105 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jban00:v:7:y:2020:i:3:p:71-84
Access Statistics for this article
International Journal of Business Analytics (IJBAN) is currently edited by John Wang
More articles in International Journal of Business Analytics (IJBAN) from IGI Global
Bibliographic data for series maintained by Journal Editor ().