AI-Based Methods to Resolve Real-Time Scheduling for Embedded Systems: A Review
Fateh Boutekkouk
Additional contact information
Fateh Boutekkouk: ReLaCS2 Laboratory, University of Oum el Bouaghi, Algeria
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 2021, vol. 15, issue 4, 1-44
Abstract:
Artificial Intelligence is becoming more attractive to resolve nontrivial problems including the well known real time scheduling (RTS) problem for Embedded Systems (ES). The latter is considered as a hard multi-objective optimization problem because it must optimize at the same time three key conflictual objectives that are tasks deadlines guarantee, energy consumption reduction and reliability enhancement. In this paper, we firstly present the necessary background to well understand the problematic of RTS in the context of ES, then we present our enriched taxonomies for real time, energy and faults tolerance aware scheduling algorithms for ES. After that, we survey the most pertinent existing works of literature targeting the application of AI methods to resolve the RTS problem for ES notably Constraint Programming, Game theory, Machine learning, Fuzzy logic, Artificial Immune Systems, Cellular Automata, Evolutionary algorithms, Multi-agent Systems and Swarm Intelligence. We end this survey by a discussion putting the light on the main challenges and the future directions.
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJCINI.290308 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jcini0:v:15:y:2021:i:4:p:1-44
Access Statistics for this article
International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) is currently edited by Kangshun Li
More articles in International Journal of Cognitive Informatics and Natural Intelligence (IJCINI) from IGI Global
Bibliographic data for series maintained by Journal Editor ().