Multi-Attribute Utility Theory Based K-Means Clustering Applications
Jungmok Ma
Additional contact information
Jungmok Ma: Korea National Defense University, Seoul, South Korea
International Journal of Data Warehousing and Mining (IJDWM), 2017, vol. 13, issue 2, 1-12
Abstract:
One of major obstacles in the application of the k-means clustering algorithm is the selection of the number of clusters k. The multi-attribute utility theory (MAUT)-based k-means clustering algorithm is proposed to tackle the problem by incorporating user preferences. Using MAUT, the decision maker's value structure for the number of clusters and other attributes can be quantitatively modeled, and it can be used as an objective function of the k-means. A target clustering problem for military targeting process is used to demonstrate the MAUT-based k-means and provide a comparative study. The result shows that the existing clustering algorithms do not necessarily reflect user preferences while the MAUT-based k-means provides a systematic framework of preferences modeling in cluster analysis.
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJDWM.2017040101 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jdwm00:v:13:y:2017:i:2:p:1-12
Access Statistics for this article
International Journal of Data Warehousing and Mining (IJDWM) is currently edited by Eric Pardede
More articles in International Journal of Data Warehousing and Mining (IJDWM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().