A Boosting-Aided Adaptive Cluster-Based Undersampling Approach for Treatment of Class Imbalance Problem
Debashree Devi,
Suyel Namasudra and
Seifedine Kadry
Additional contact information
Debashree Devi: National Institute of Technology, Silchar, India
Suyel Namasudra: National Institute of Technology Patna, Patna, India
Seifedine Kadry: Beirut Arab University, Lebanon
International Journal of Data Warehousing and Mining (IJDWM), 2020, vol. 16, issue 3, 60-86
Abstract:
The subject of a class imbalance is a well-investigated topic which addresses performance degradation of standard learning models due to uneven distribution of classes in a dataspace. Cluster-based undersampling is a popular solution in the domain which offers to eliminate majority class instances from a definite number of clusters to balance the training data. However, distance-based elimination of instances often got affected by the underlying data distribution. Recently, ensemble learning techniques have emerged as effective solution due to its weighted learning principle of rare instances. In this article, a boosting aided adaptive cluster-based undersampling technique is proposed to facilitate elimination of learning- insignificant majority class instances from the clusters, detected through AdaBoost ensemble learning model. The proposed work is validated with seven existing cluster based undersampling techniques for six binary datasets and three classification models. The experimental results have established the effectives of the proposed technique than the existing methods.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJDWM.2020070104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jdwm00:v:16:y:2020:i:3:p:60-86
Access Statistics for this article
International Journal of Data Warehousing and Mining (IJDWM) is currently edited by Eric Pardede
More articles in International Journal of Data Warehousing and Mining (IJDWM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().