EconPapers    
Economics at your fingertips  
 

An Improvement of K-Medoids Clustering Algorithm Based on Fixed Point Iteration

Xiaodi Huang, Minglun Ren and Zhongfeng Hu
Additional contact information
Xiaodi Huang: Hefei University, China
Minglun Ren: Hefei University of Technology, Hefei, China
Zhongfeng Hu: Hefei University, China

International Journal of Data Warehousing and Mining (IJDWM), 2020, vol. 16, issue 4, 84-94

Abstract: The process of K-medoids algorithm is that it first selects data randomly as initial centers to form initial clusters. Then, based on PAM (partitioning around medoids) algorithm, centers will be sequential replaced by all the remaining data to find a result has the best inherent convergence. Since PAM algorithm is an iterative ergodic strategy, when the data size or the number of clusters are huge, its expensive computational overhead will hinder its feasibility. The authors use the fixed-point iteration to search the optimal clustering centers and build a FPK-medoids (fixed point-based K-medoids) algorithm. By constructing fixed point equations for each cluster, the problem of searching optimal centers is converted into the solving of equation set in parallel. The experiment is carried on six standard datasets, and the result shows that the clustering efficiency of proposed algorithm is significantly improved compared with the conventional algorithm. In addition, the clustering quality will be markedly enhanced in handling problems with large-scale datasets or a large number of clusters.

Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJDWM.2020100105 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jdwm00:v:16:y:2020:i:4:p:84-94

Access Statistics for this article

International Journal of Data Warehousing and Mining (IJDWM) is currently edited by Eric Pardede

More articles in International Journal of Data Warehousing and Mining (IJDWM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jdwm00:v:16:y:2020:i:4:p:84-94