Top-K Pseudo Labeling for Semi-Supervised Image Classification
Yi Jiang and
Hui Sun
Additional contact information
Yi Jiang: Harbin University of Science and Technology, China
Hui Sun: Harbin University of Science and Technology, China
International Journal of Data Warehousing and Mining (IJDWM), 2023, vol. 19, issue 2, 1-18
Abstract:
In this paper, a top-k pseudo labeling method for semi-supervised self-learning is proposed. Pseudo labeling is a key technology in semi-supervised self-learning. Briefly, the quality of the pseudo label generated largely determined the convergence of the neural network and the accuracy obtained. In this paper, the authors use a method called top-k pseudo labeling to generate pseudo label during the training of semi-supervised neural network model. The proposed labeling method helps a lot in learning features from unlabeled data. The proposed method is easy to implement and only relies on the neural network prediction and hyper-parameter k. The experiment results show that the proposed method works well with semi-supervised learning on CIFAR-10 and CIFAR-100 datasets. Also, a variant of top-k labeling for supervised learning named top-k regulation is proposed. The experiment results show that various models can achieve higher accuracy on test set when trained with top-k regulation.
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDWM.316150 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jdwm00:v:19:y:2023:i:2:p:1-18
Access Statistics for this article
International Journal of Data Warehousing and Mining (IJDWM) is currently edited by Eric Pardede
More articles in International Journal of Data Warehousing and Mining (IJDWM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().