Artificial Bee Colony and Deep Neural Network-Based Diagnostic Model for Improving the Prediction Accuracy of Diabetes
Anand Kumar Srivastava,
Yugal Kumar and
Pradeep Kumar Singh
Additional contact information
Anand Kumar Srivastava: ABES Engineering College, Ghaziabad, India & Jaypee University of Information Technology, Waknaghat, India
Yugal Kumar: Jaypee University of Information Technology, Waknaghat, India
Pradeep Kumar Singh: Jaypee University of Information Technology, Waknaghat, India
International Journal of E-Health and Medical Communications (IJEHMC), 2021, vol. 12, issue 2, 32-50
Abstract:
A large number of machine learning approaches are implemented in healthcare field for effective diagnosis and prediction of different diseases. The aim of these machine learning approaches is to build automated diagnostic tool for helping the physician as well as monitor the health status of patients. These diagnostic tools are widely adopted in intensive care unit for life expectancy of patients. In this study, an effort is made to design an automated diagnostic model for the diagnosis and prediction of diabetes patients. The proposed diagnostic model is designed using artificial bee colony (ABC) algorithm and deep neural network (DNN) technique, called ABC-DNN-based diagnostic model. The ABC algorithm is applied to determine the relevant features for diabetes prediction and diagnosis while DNN technique is adopted for the prediction and diagnosis of diabetes affected patients. The performance of proposed diagnostic model is tested over Pima Indian Diabetes dataset and evaluated using accuracy, sensitivity, specificity, F-measure, Kappa, and area under curve (AUC) parameters. Further, 10-fold and 50-50% training-testing method are considered to assess the performance of proposed diagnostic model. The experimental results of proposed ABC-DNN model is compared with DNN technique and several existing diabetes studies. It is observed that proposed ABC-DNN model achieves 94.74% accuracy rate using 10-fold method.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJEHMC.2021030102 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jehmc0:v:12:y:2021:i:2:p:32-50
Access Statistics for this article
International Journal of E-Health and Medical Communications (IJEHMC) is currently edited by Joel J.P.C. Rodrigues
More articles in International Journal of E-Health and Medical Communications (IJEHMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().