EconPapers    
Economics at your fingertips  
 

A Confrontation of Lattice Boltzmann, Finite Difference and Taguchi Experimental Design Results for Optimizing Plasma Spraying Operating Conditions Toward Deposit Requirements

Ridha Djebali
Additional contact information
Ridha Djebali: ISLAIB, University of Jendouba, Béja, Tunisia & UR: Matériaux, Energie et Energies Renouvelables (MEER), University of Gafsa, Tunisia

International Journal of Energy Optimization and Engineering (IJEOE), 2017, vol. 6, issue 4, 16-34

Abstract: The aim of the present work is the confrontation of three numerical techniques results to optimize the operating conditions of thermal plasma spraying process. The Lattice Boltzmann method (LBM) is used to scrutinize dispersion effects of injection parameters on droplet impact characteristics when impacting substrate. The validation of the developed model shows good agreement with former findings. The results of spraying Zirconia particles give the values Kmin=88.2, Kmax=367.4, Kmean=273.8 and a standard deviation of 48.0 for the Sommerfeld number. The Taguchi experimental design study is conducted for five operating parameters of two levels. The ensuing retained factors combination give Kmean=258.9. To assess drawn conclusions, confirmation test was performed using the Jets&Poudres software. The results show that the prior way is to coat and particles of dp

Date: 2017
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJEOE.2017100102 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jeoe00:v:6:y:2017:i:4:p:16-34

Access Statistics for this article

International Journal of Energy Optimization and Engineering (IJEOE) is currently edited by Jose Marmolejo-Saucedo

More articles in International Journal of Energy Optimization and Engineering (IJEOE) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jeoe00:v:6:y:2017:i:4:p:16-34