Accuracy Enhancement for Breast Cancer Detection Using Classification and Feature Selection
Somil Jain and
Puneet Kumar
Additional contact information
Somil Jain: Mody University of Science and Technology, India
Puneet Kumar: Mody University of Science and Technology, India
International Journal of Information Retrieval Research (IJIRR), 2022, vol. 12, issue 2, 1-15
Abstract:
Chronic disease like kidney failure, heart disease, cancer etc. is the major cause of deaths now days worldwide. Especially for the females the most dangerous type of disease from which the women of every age group are suffering especially the middle age group women’s is the breast cancer. To detect this type of disease at an early stage is a challenging task. In order to predict the breast cancer at an early stage classification algorithm of high accuracy and less error rate are desirable. In this research work we have used 4 classification algorithms K-NN, J48, Logistic regression and Bayes Net for building the predictive model, also the wrapper method of feature selection is used to enhance the accuracy rate and reduce the error rate of the used classifiers. To carry out this research we have used Wisconsin Diagnostic Breast Cancer dataset which contains 569 instances along with 32 attributes and a class attribute which will predict the type of cancer i.e. Benign or Malignant.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJIRR.299931 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jirr00:v:12:y:2022:i:2:p:1-15
Access Statistics for this article
International Journal of Information Retrieval Research (IJIRR) is currently edited by Zhongyu Lu
More articles in International Journal of Information Retrieval Research (IJIRR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().