Deep Semantic-Level Cross-Domain Recommendation Model Based on DSV-CDRM
Xuewei Lai and
Qingqing Jie
Additional contact information
Xuewei Lai: College of Information and Media, Sanmenxia Polytechnic, China
Qingqing Jie: Laboratory Medicine Department, Sanmenxia Central Hospital, China
International Journal of Information Technology and Web Engineering (IJITWE), 2023, vol. 18, issue 1, 1-20
Abstract:
A deep semantic-level cross-domain recommendation model based on DSV-CDRM is proposed to address the problems of existing methods such as single modeling approach. First, review information is converted into word vectors using a TinyBERT pre-trained language model, and then two global deep semantic viewpoint matrices are used in conjunction with a gating mechanism to guide queries. An additional convolutional layer is added on top of the improved text convolution to construct auxiliary documents using similar but non-overlapping user comments. Finally, correlations between deep semantic viewpoints between different domains are learned by constructing a correlation matrix and performing semantic matching. Experiments on the Amazon public dataset demonstrate that the proposed method outperforms existing models in both MAE and MSE, and it can effectively improve the performance of cross-domain recommendation system.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJITWE.333639 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jitwe0:v:18:y:2023:i:1:p:1-20
Access Statistics for this article
International Journal of Information Technology and Web Engineering (IJITWE) is currently edited by Ghazi I. Alkhatib
More articles in International Journal of Information Technology and Web Engineering (IJITWE) from IGI Global
Bibliographic data for series maintained by Journal Editor ().