Application of QGA-BP Neural Network in Debt Risk Assessment of Government Platforms
Qingping Li,
Ming Liu and
Yao Zhang
Additional contact information
Qingping Li: Huainan Normal University, China
Ming Liu: Huainan Normal University, China
Yao Zhang: Southwestern University of Finance and Economics, China
International Journal of Information Technology and Web Engineering (IJITWE), 2024, vol. 19, issue 1, 1-18
Abstract:
How to correctly understand the existence of local government debt, study its risk classification and impact, give full play to the “dual nature” of debt with a full-caliber indicator system, and avoid debt risks to the greatest extent. That is the research direction of this article. In order to improve the accuracy and efficiency of risk assessment and effectively reduce the debt risk of government platform companies, a risk assessment method based on optimized back-propagation (BP) neural network is proposed. First, the method uses quantum genetic algorithm (quantum genetic algorithm, QGA) to adjust and determine the initial weight and threshold of BP neural network and realize the optimization of BP neural network model parameter setting. Then, the QGA-BP debt risk assessment of government platforms is verified that it performs well in the debt risk prediction of government platform companies, and its prediction accuracy and prediction speed are improved.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJITWE.335124 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jitwe0:v:19:y:2024:i:1:p:1-18
Access Statistics for this article
International Journal of Information Technology and Web Engineering (IJITWE) is currently edited by Ghazi I. Alkhatib
More articles in International Journal of Information Technology and Web Engineering (IJITWE) from IGI Global
Bibliographic data for series maintained by Journal Editor ().