EconPapers    
Economics at your fingertips  
 

Mobile Based Healthcare Tool an Integrated Disease Prediction & Recommendation System

Megha Rathi and Vikas Pareek
Additional contact information
Megha Rathi: Jaypee Institute of Information Technology, Noida, India
Vikas Pareek: Mahatma Gandhi Central University, Motihari, India

International Journal of Knowledge and Systems Science (IJKSS), 2019, vol. 10, issue 1, 38-62

Abstract: Recent advances in mobile technology and machine learning together steer us to create a mobile-based healthcare app for recommending disease. In this study, the authors develop an android-based healthcare app which will detect all kinds of diseases in no time. The authors developed a novel, hybrid machine-learning algorithm in order to provide more accurate results. For the same purpose, the authors have combined two machine-learning algorithms, SVM and GA. The proposed algorithms will enhance the accuracy and at the same time reduce the complexity and count of attributes in the database. Analysis of algorithm is also done using statistical parameters like accuracy, confusion matrix, and roc-curve. The pivotal intent of this research work is to create an android-based healthcare app which will predict disease when provided with certain details. For a disease like cancer, for which a series of tests are required for confirmation, this app will quickly detect cancer and it is helpful to doctors as they can start the right course of treatment right away. Further, this app will also recommend a diet fitting the patient profile.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJKSS.2019010103 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jkss00:v:10:y:2019:i:1:p:38-62

Access Statistics for this article

International Journal of Knowledge and Systems Science (IJKSS) is currently edited by Van Nam Huynh

More articles in International Journal of Knowledge and Systems Science (IJKSS) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jkss00:v:10:y:2019:i:1:p:38-62