Automated Filtering of Eye Movements Using Dynamic AOI in Multiple Granularity Levels
Gavindya Jayawardena and
Sampath Jayarathna
Additional contact information
Gavindya Jayawardena: Old Dominion University, USA
Sampath Jayarathna: Old Dominion University, USA
International Journal of Multimedia Data Engineering and Management (IJMDEM), 2021, vol. 12, issue 1, 49-64
Abstract:
Eye-tracking experiments involve areas of interest (AOIs) for the analysis of eye gaze data. While there are tools to delineate AOIs to extract eye movement data, they may require users to manually draw boundaries of AOIs on eye tracking stimuli or use markers to define AOIs. This paper introduces two novel techniques to dynamically filter eye movement data from AOIs for the analysis of eye metrics from multiple levels of granularity. The authors incorporate pre-trained object detectors and object instance segmentation models for offline detection of dynamic AOIs in video streams. This research presents the implementation and evaluation of object detectors and object instance segmentation models to find the best model to be integrated in a real-time eye movement analysis pipeline. The authors filter gaze data that falls within the polygonal boundaries of detected dynamic AOIs and apply object detector to find bounding-boxes in a public dataset. The results indicate that the dynamic AOIs generated by object detectors capture 60% of eye movements & object instance segmentation models capture 30% of eye movements.
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJMDEM.2021010104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jmdem0:v:12:y:2021:i:1:p:49-64
Access Statistics for this article
International Journal of Multimedia Data Engineering and Management (IJMDEM) is currently edited by Chengcui Zhang
More articles in International Journal of Multimedia Data Engineering and Management (IJMDEM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().