Weighted Association Rule Mining for Video Semantic Detection
Lin Lin and
Mei-Ling Shyu
Additional contact information
Lin Lin: University of Miami, USA
Mei-Ling Shyu: University of Miami, USA
International Journal of Multimedia Data Engineering and Management (IJMDEM), 2010, vol. 1, issue 1, 37-54
Abstract:
Semantic knowledge detection of multimedia content has become a very popular research topic in recent years. The association rule mining (ARM) technique has been shown to be an efficient and accurate approach for content-based multimedia retrieval and semantic concept detection in many applications. To further improve the performance of traditional association rule mining technique, a video semantic concept detection framework whose classifier is built upon a new weighted association rule mining (WARM) algorithm is proposed in this article. Our proposed WARM algorithm is able to capture the different significance degrees of the items (feature-value pairs) in generating the association rules for video semantic concept detection. Our proposed WARM-based framework first applies multiple correspondence analysis (MCA) to project the features and classes into a new principle component space and discover the correlation between feature-value pairs and classes. Next, it considers both correlation and percentage information as the measurement to weight the feature-value pairs and to generate the association rules. Finally, it performs classification by using these weighted association rules. To evaluate our WARM-based framework, we compare its performance of video semantic concept detection with several well-known classifiers using the benchmark data available from the 2007 and 2008 TRECVID projects. The results demonstrate that our WARM-based framework achieves promising performance and performs significantly better than those classifiers in the comparison.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/jmdem.2010111203 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jmdem0:v:1:y:2010:i:1:p:37-54
Access Statistics for this article
International Journal of Multimedia Data Engineering and Management (IJMDEM) is currently edited by Chengcui Zhang
More articles in International Journal of Multimedia Data Engineering and Management (IJMDEM) from IGI Global
Bibliographic data for series maintained by Journal Editor ().