Low-Temperature Direct Bonding of 3D-IC Packages and Power IC Modules Using Ag Nanotwinned Thin Films
Tung-Han Chuang,
Po-Ching Wu,
Yu-Chang Lai and
Pei-Ing Lee
Additional contact information
Tung-Han Chuang: National Taiwan University, Taiwan
Po-Ching Wu: National Taiwan University, Taiwan
Yu-Chang Lai: National Taiwan University, Taiwan
Pei-Ing Lee: National Taiwan University, Taiwan
International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME), 2022, vol. 12, issue 1, 1-16
Abstract:
Ag has the lowest stacking fault energy of all metals, which allows twin formation to occur more easily. The (111)-preferred orientation Ag nanotwinned films is fabricated by either sputtering or evaporation method exhibit columnar Ag grains grown vertically on Si substrates. Ag nanotwinned films have a (111)-preferred orientation with a density about 98% and diffusivity that is 2 to 5 orders of magnitude higher than those of (100) and (110) surfaces. Low temperature direct bonding with (111)-oriented Ag nanotwins films is proposed to fulfil the requirements for wafer-on-wafer (WoW), chip-on-wafer (CoW), and chip-on-wafer-on-substrate (CoWoS) advanced 3D-IC packaging, with the process temperature drastically reduced to 100°C. Such an innovative bonding method also provides a promising solution for die attachment of Si chips with DBC-ceramic substrates for power module packaging.
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJMMME.313037 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jmmme0:v:12:y:2022:i:1:p:1-16
Access Statistics for this article
International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME) is currently edited by J. Paulo Davim
More articles in International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME) from IGI Global
Bibliographic data for series maintained by Journal Editor ().