Clustering Approach Using Artificial Bee Colony Algorithm for Healthcare Waste Disposal Facility Location Problem
Zeynep Gergin,
Nükhet Tunçbilek and
Şakir Esnaf
Additional contact information
Zeynep Gergin: Istanbul Kultur University, Istanbul, Turkey
Nükhet Tunçbilek: Istanbul University-Cerrahpasa, Istanbul, Turkey
Şakir Esnaf: Istanbul University-Cerrahpasa, Istanbul, Turkey
International Journal of Operations Research and Information Systems (IJORIS), 2019, vol. 10, issue 1, 56-75
Abstract:
In this study, an Artificial Bee Colony (ABC) based clustering algorithm is proposed for solving continuous multiple facility location problems. Unlike the original version applied to multivariate data clustering, the ABC based clustering here solves the two-dimensional clustering. On the other hand, the multiple facility location problem the proposed clustering algorithm deals with is aimed to find site locations for healthcare wastes. After applying ABC based clustering algorithm on test data, a real-world facility location problem is solved for identifying healthcare waste disposal facility locations for Istanbul Municipality. Geographical coordinates and healthcare waste amounts of Istanbul hospitals are used to decide the locations of sterilization facilities to be established for reducing the medical waste generated. ABC based clustering is performed for different number of clusters predefined by Istanbul Metropolitan Municipality, and the total cost—the amount of healthcare waste produced by a hospital, multiplied by its distance to the sterilization facility—is calculated to decide the number of facilities to be opened. Benchmark results with four algorithms for test data and with two algorithms for real world problem reveal the superior performance of the proposed methodology.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJORIS.2019010104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:joris0:v:10:y:2019:i:1:p:56-75
Access Statistics for this article
International Journal of Operations Research and Information Systems (IJORIS) is currently edited by John Wang
More articles in International Journal of Operations Research and Information Systems (IJORIS) from IGI Global
Bibliographic data for series maintained by Journal Editor ().