Probabilistic Model of Patient Classification Using Bayesian Model: A Case Study From Thailand EMRs
Praowpan Tansitpong
Additional contact information
Praowpan Tansitpong: NIDA Business School, Thailand
International Journal of Reliable and Quality E-Healthcare (IJRQEH), 2024, vol. 13, issue 1, 1-19
Abstract:
The research emphasizes the effectiveness of Bayesian classification algorithms in predicting patient visits in healthcare settings. Bayesian algorithms examine past patient data to detect intricate patterns in admission dynamics, including demographic, clinical, and temporal factors. Through the use of Bayesian principles, prediction models are able to estimate the probability of certain patient demographics occurring at certain intervals, therefore assisting in the allocation of resources and the management of operations. Probabilities that have been estimated are used to make choices on staffing, resource allocation, and operational strategy. The variation in probability estimates across different observations improves the predictive usefulness, hence strengthening the effectiveness in healthcare management and planning.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJRQEH.348579 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jrqeh0:v:13:y:2024:i:1:p:1-19
Access Statistics for this article
International Journal of Reliable and Quality E-Healthcare (IJRQEH) is currently edited by Anastasius Moumtzoglou
More articles in International Journal of Reliable and Quality E-Healthcare (IJRQEH) from IGI Global
Bibliographic data for series maintained by Journal Editor ().