EconPapers    
Economics at your fingertips  
 

Towards Harnessing Phone Messages and Telephone Conversations for Prediction of Food Crisis

Andrew Lukyamuzi, John Ngubiri and Washington Okori
Additional contact information
Andrew Lukyamuzi: Institute of Computer Science, Mbarara University of Science and Technology, Mbarara, Uganda
John Ngubiri: College of Computing and Information Sciences, Makerere University, Uganda
Washington Okori: Uganda Technology and Management University (UTAMU), Kampala, Uganda

International Journal of System Dynamics Applications (IJSDA), 2015, vol. 4, issue 4, 1-16

Abstract: Food insecurity is a global challenge affecting millions of people especially those from least developed regions. Famine predictions are being carried out to estimate when shortage of food is most likely to happen. The traditional data sets such as house hold information, price trends, crop production trends and biophysical data used for predicting food insecurity are both labor intensive and expensive to acquire. Current trends are towards harnessing big data to study various phenomena such sentiment analysis and stock markets. Big data is said to be easier to obtain than traditional datasets. This study shows that phone messages archives and telephone conversations as big datasets are potential for predicting food crisis. This is timely with the current situation of massive penetration of mobile technology and the necessary data can be gathered to foster studies such as this. Computation techniques such as Naïve Bayes, Artificial Networks and Support Vector Machines are prospective candidates in this strategy. If the strategy is to work in a nation like Uganda, areas of concern have been highlighted. Future work points at exploring this approach experimentally.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJSDA.2015100101 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jsda00:v:4:y:2015:i:4:p:1-16

Access Statistics for this article

International Journal of System Dynamics Applications (IJSDA) is currently edited by Ahmad Taher Azar

More articles in International Journal of System Dynamics Applications (IJSDA) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jsda00:v:4:y:2015:i:4:p:1-16