Using Deep Learning and Swarm Intelligence to Achieve Personalized English-Speaking Education
Yang Liu
Additional contact information
Yang Liu: Huanghe Science and Technology University, China
International Journal of Swarm Intelligence Research (IJSIR), 2024, vol. 15, issue 1, 1-15
Abstract:
This paper presents a pioneering approach to personalized English oral education through the integration of deep learning and swarm intelligence algorithms. Leveraging deep learning techniques, our system offers precise evaluation of various aspects of spoken language, including pronunciation, fluency, and grammatical accuracy. Furthermore, we combine swarm intelligence algorithms to optimize model parameters to achieve optimal performance. We compare the proposed optimization algorithm based on swarm intelligence and its corresponding original algorithm for training comparison to test the effect of the proposed optimizer. Experimental results show that in most cases, the accuracy of the test set using the optimization algorithm based on the swarm intelligence algorithm is better than the corresponding original version, and the training results are more stable. Our experimental results demonstrate the efficacy of the proposed approach in enhancing personalized English oral education, paving the way for transformative advancements in language learning technologies.
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.343989 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jsir00:v:15:y:2024:i:1:p:1-15
Access Statistics for this article
International Journal of Swarm Intelligence Research (IJSIR) is currently edited by Yuhui Shi
More articles in International Journal of Swarm Intelligence Research (IJSIR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().