EconPapers    
Economics at your fingertips  
 

A Passenger Flow Prediction Method Using SAE-GCN-BiLSTM for Urban Rail Transit

Fan Liu
Additional contact information
Fan Liu: School of Management, Zhengzhou University of Economics and Business, China

International Journal of Swarm Intelligence Research (IJSIR), 2024, vol. 15, issue 1, 1-21

Abstract: To address the problems of existing passenger flow prediction methods such as low accuracy, inadequate learning of spatial features of station topology, and inability to apply to large networks, a SAE-GCN-BiLSTM-based passenger flow forecasting method for urban rail transit is proposed. First, the external features are extracted layer by layer using stacked autoencoder (SAE). Then, graph convolutional network (GCN) is used to capture the spatial features of station topology, and bi-directional long and short-term memory network (BiLSTM) is used to extract the bi-directional temporal features, realizing the extraction of the spatio-temporal features. Finally, external features and spatio-temporal features are fused for accurate prediction of urban rail transit passenger flow. The experimental results show that the proposed method is higher than several other advanced models in the evaluation indexes under different granularities, indicating that the model effectively develops the accuracy and robustness of urban rail transit passenger flow prediction.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.335100 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jsir00:v:15:y:2024:i:1:p:1-21

Access Statistics for this article

International Journal of Swarm Intelligence Research (IJSIR) is currently edited by Yuhui Shi

More articles in International Journal of Swarm Intelligence Research (IJSIR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jsir00:v:15:y:2024:i:1:p:1-21