EconPapers    
Economics at your fingertips  
 

A Network Intrusion Detection Method for Various Information Systems Based on Federated and Deep Learning

Qi Zhou and Chun Shi
Additional contact information
Qi Zhou: School of Artificial Intelligence, Guangdong Open University, Guangzhou, China
Chun Shi: School of Electronic and Information, Guangdong Polytechnic Normal University, Guangzhou, China

International Journal on Semantic Web and Information Systems (IJSWIS), 2024, vol. 20, issue 1, 1-28

Abstract: Under the premise of ensuring data privacy, traditional network intrusion detection (NID) methods cannot achieve high accuracy for different types of intrusions. A NID method combining transformer and federated learning (FedL) is proposed for this purpose. First, a multi-party collaborative learning framework was built based on FedL, which achieved data exchange and sharing. Then, by introducing the self-attention mechanism (AttM) to improve the traditional transformer, it could quickly converge. Finally, an NID model integrating transformer and FedL was constructed by combining DNN, GRU, and an encoder module composed of improved transformer, achieving accurate detection of network intrusion. The proposed NID method was compared with the other three methods. The results show that the proposed method has the highest NID accuracy and F1 score on the NSL-KDD and UNSW-NB15 dataset, with the highest accuracy reaching 99.65% and 89.25%, while the F1 score has the highest accuracy, reaching 99.45% and 88.13%, outperforming the other three comparative algorithms in terms of performance.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSWIS.335495 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:igg:jswis0:v:20:y:2024:i:1:p:1-28

Access Statistics for this article

International Journal on Semantic Web and Information Systems (IJSWIS) is currently edited by Brij Gupta

More articles in International Journal on Semantic Web and Information Systems (IJSWIS) from IGI Global
Bibliographic data for series maintained by Journal Editor ().

 
Page updated 2025-03-19
Handle: RePEc:igg:jswis0:v:20:y:2024:i:1:p:1-28