EconPapers    
Economics at your fingertips  
 

Sparse Integer Programming Is Fixed-Parameter Tractable

Friedrich Eisenbrand (), Christoph Hunkenschröder (), Kim-Manuel Klein (), Martin Koutecký (), Asaf Levin () and Shmuel Onn ()
Additional contact information
Friedrich Eisenbrand: EPFL SB MATH DISOPT, 1015 Lausanne, Switzerland
Christoph Hunkenschröder: Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany
Kim-Manuel Klein: Institut für Theoretische Informatik, Universität zu Lübeck, 23538 Lübeck, Germany
Martin Koutecký: Computer Science Institute, Faculty of Mathematics and Physics, Charles University, 118 00 Praha 1, Czech Republic
Asaf Levin: Faculty of Data and Decision Sciences, Technion – Israel Institute of Technology, Technion City, Haifa 3200003, Israel
Shmuel Onn: Faculty of Data and Decision Sciences, Technion – Israel Institute of Technology, Technion City, Haifa 3200003, Israel

Mathematics of Operations Research, 2025, vol. 50, issue 3, 2141-2156

Abstract: We study the general integer programming problem where the number of variables n is a variable part of the input. We consider two natural parameters of the constraint matrix A : its numeric measure a and its sparsity measure d . We present an algorithm for solving integer programming in time g ( a , d ) poly ( n , L ) , where g is some computable function of the parameters a and d , and L is the binary encoding length of the input. In particular, integer programming is fixed-parameter tractable parameterized by a and d , and is solvable in polynomial time for every fixed a and d . Our results also extend to nonlinear separable convex objective functions.

Keywords: 90C10; 68Q27; integer programming; parameterized complexity; Graver basis; treedepth; n -fold; tree-fold; 2-stage stochastic; multistage stochastic (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/moor.2023.0162 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormoor:v:50:y:2025:i:3:p:2141-2156

Access Statistics for this article

More articles in Mathematics of Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-09-04
Handle: RePEc:inm:ormoor:v:50:y:2025:i:3:p:2141-2156