EconPapers    
Economics at your fingertips  
 

A nonstandard empirical likelihood for time series

Danial J. Nordman, Helle Bunzel and Soumendra N. Lahiri

ISU General Staff Papers from Iowa State University, Department of Economics

Abstract: Standard blockwise empirical likelihood (BEL) for stationary, weakly dependent time series requires specifying a fixed block length as a tuning parameter for setting confidence regions. This aspect can be difficult and impacts coverage accuracy. As an alternative, this paper proposes a new version of BEL based on a simple, though nonstandard, data-blocking rule which uses a data block of every possible length. Consequently, the method does not involve the usual block selection issues and is also anticipated to exhibit better coverage performance. Its nonstandard blocking scheme, however, induces nonstandard asymptotics and requires a significantly different development compared to standard BEL. We establish the large-sample distribution of log-ratio statistics from the new BEL method for calibrating confidence regions for mean or smooth function parameters of time series. This limit law is not the usual chi-square one, but is distribution-free and can be reproduced through straightforward simulations. Numerical studies indicate that the proposed method generally exhibits better coverage accuracy than standard BEL.

Date: 2013-12-01
References: Add references at CitEc
Citations:

Downloads: (external link)
https://dr.lib.iastate.edu/server/api/core/bitstre ... ede8ddcaf1cd/content
Our link check indicates that this URL is bad, the error code is: 403 Forbidden

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:isu:genstf:201312010800001057

Access Statistics for this paper

More papers in ISU General Staff Papers from Iowa State University, Department of Economics Iowa State University, Dept. of Economics, 260 Heady Hall, Ames, IA 50011-1070. Contact information at EDIRC.
Bibliographic data for series maintained by Curtis Balmer ().

 
Page updated 2025-04-18
Handle: RePEc:isu:genstf:201312010800001057