A Linear Forecasting Model and Its Application to Economic Data
Georg Peters
Journal of Forecasting, 2001, vol. 20, issue 5, 315-28
Abstract:
We present a forecasting model based on fuzzy pattern recognition and weighted linear regression. In this model fuzzy pattern recognition is used to find homogeneous fuzzy classes in a heterogeneous data set. It is assumed that the classes represent typical situations. For each class a weighted regression analysis is conducted. The forecasting results obtained by the class regression analysis are aggregated to obtain the "overall" estimation of the regression model. We apply the model to the forecasting of economic data of the USA. Copyright © 2001 by John Wiley & Sons, Ltd.
Date: 2001
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:20:y:2001:i:5:p:315-28
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().