The Approximation of Long-Memory Processes by an ARMA Model
Gopal K Basak,
Ngai Hang Chan and
Wilfredo Palma
Journal of Forecasting, 2001, vol. 20, issue 6, 367-89
Abstract:
A mean square error criterion is proposed in this paper to provide a systematic approach to approximate a long-memory time series by a short-memory ARMA(1, 1) process. Analytic expressions are derived to assess the effect of such an approximation. These results are established not only for the pure fractional noise case, but also for a general autoregressive fractional moving average long-memory time series. Performances of the ARMA(1,1) approximation as compared to using an ARFIMA model are illustrated by both computations and an application to the Nile river series. Results derived in this paper shed light on the forecasting issue of a long-memory process. Copyright © 2001 by John Wiley & Sons, Ltd.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (10)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:20:y:2001:i:6:p:367-89
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().