Bayesian Forecasts for Cointegrated Models
Shu-Ing Liu
Journal of Forecasting, 2002, vol. 21, issue 3, 167-80
Abstract:
This paper investigates Bayesian forecasts for some cointegrated time series data. Suppose data are derived from some cointegrated model, but, an unrestricted vector autoregressive model, without including cointegrated conditions, is fitted; the implication of using an incorrect model will be investigated from the Bayesian forecasting viewpoint. For some special cointegrated data and under the diffuse prior assumption, it can be analytically proven that the posterior predictive distributions for both the true model and the fitted model are asymptotically the same for any future step. For a more general cointegrated model, examinations are performed via simulations. Some simulated results reveal that a reasonably unrestricted model will still provide a rather accurate forecast as long as the sample size is large enough or the forecasting period is not too far in the future. For a small sample size or for long-term forecasting, more accurate forecasts are expected if the correct cointegrated model is actually applied. Copyright © 2002 by John Wiley & Sons, Ltd.
Date: 2002
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:21:y:2002:i:3:p:167-80
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().