Using a heterogeneous multinomial probit model with a neural net extension to model brand choice
Harald Hruschka
Additional contact information
Harald Hruschka: Department of Marketing, Faculty of Economics, University of Regensburg, Germany, Postal: Department of Marketing, Faculty of Economics, University of Regensburg, Germany
Journal of Forecasting, 2007, vol. 26, issue 2, 113-127
Abstract:
The multinomial probit model introduced here combines heterogeneity across households with flexibility of the (deterministic) utility function. To achieve flexibility deterministic utility is approximated by a neural net of the multilayer perceptron type. A Markov Chain Monte Carlo method serves to estimate heterogeneous multinomial probit models which fulfill economic restrictions on signs of (marginal) effects of predictors (e.g., negative for price). For empirical choice data the heterogeneous multinomial probit model extended by a multilayer perceptron clearly outperforms all the other models studied. Moreover, replacing homogeneous by heterogeneous reference price mechanisms and thus allowing price expectations to be formed differently across households also leads to better model performance. Mean utility differences and mean elasticities w.r.t. price and price deviation from reference price demonstrate that models with linear utility and nonlinear utility approximated by a multilayer perceptron lead to very different implications for managerial decision making. Copyright © 2007 John Wiley & Sons, Ltd.
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.1013 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:26:y:2007:i:2:p:113-127
DOI: 10.1002/for.1013
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().